
BHARTIYA INSTITUTE OF ENGINEERING & TECHNOLOGY, SIKAR

LAB MANUAL

VI SEMESTER

MACHINE LEARNING LAB

Subject Code: 6CS4-22

Prepared By:
Mr. AMIT SINGH SHEKHAWAT

Head Of Department
(CSE Dept.)

Department of Computer Science and Engineering
BIET, Sikar

Website: www.bietsikar.ac.in

CONTENTS

S.no. Experiments Page No.

1
Implement and demonstrate the FIND-S algorithm for finding the most specific
hypothesis based on a given set of training data samples. Read the training data from
a .CSV file.

7

2
For a given set of training data examples stored in a .CSV file, implement and
demonstrate the Candidate-Elimination algorithm to output a description of the set of
all hypotheses consistent with the training examples.

10

3
Write a program to demonstrate the working of the decision tree based ID3
algorithm. Use an appropriate data set for building the decision tree and apply this
knowledge to classify a new sample.

12

4
Build an Artificial Neural Network by implementing the Backpropagation algorithm
and test the same using appropriate data sets. 16

5
Write a program to implement the naïve Bayesian classifier for a sample training data
set stored as a .CSV file. Compute the accuracy of the classifier, considering few test
data sets.

20

6
Assuming a set of documents that need to be classified, use the naïve Bayesian
Classifier model to perform this task. Built-in Java classes/API can be used to write
the program. Calculate the accuracy, precision, and recall for your data set.

25

7
Write a program to construct a Bayesian network considering medical data. Use this
model to demonstrate the diagnosis of heart patients using standard Heart Disease
Data Set. You can use Java/Python ML library classes/API.

29

8

Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data
set for clustering using k-Means algorithm. Compare the results of these two
algorithms and comment on the quality of clustering. You can add Java/Python ML
library classes/API in the program.

31

9
Write a program to implement k-Nearest Neighbour algorithm to classify the iris data
set. Print both correct and wrong predictions. Java/Python ML library classes can be
used for this problem.

38

10
Implement the non-parametric Locally Weighted Regression algorithm in order to fit
data points. Select appropriate data set for your experiment and draw graphs. 42

6CS4-22ML Lab Manual

Dept. of CSE, BIET Page 2

Introduction

Machine learning

Machine learning is a subset of artificial intelligence in the field of computer science that often

uses statistical techniques to give computers the ability to "learn" (i.e., progressively improve

performance on a specific task) with data, without being explicitly programmed. In the past

decade, machine learning has given us self-driving cars, practical speech recognition, effective

web search, and a vastly improved understanding of the human genome.

Machine learning tasks

Machine learning tasks are typically classified into two broad categories, depending on whether

there is a learning "signal" or "feedback" available to a learning system:

1. Supervised learning: The computer is presented with example inputs and their desired

outputs, given by a "teacher", and the goal is to learn a general rule that maps inputs to outputs.

As special cases, the input signal can be only partially available, or restricted to special feedback:

2. Semi-supervised learning: the computer is given only an incomplete training signal: a

training set with some (often many) of the target outputs missing.

3. Active learning: the computer can only obtain training labels for a limited set of instances

(based on a budget), and also has to optimize its choice of objects to acquire labels for. When

used interactively, these can be presented to the user for labeling.

4. Reinforcement learning: training data (in form of rewards and punishments) is given only as

feedback to the program's actions in a dynamic environment, such as driving a vehicle or playing

a game against an opponent.

6CS4-22ML Lab Manual

Dept. of CSE, BIET Page 3

5. Unsupervised learning: No labels are given to the learning algorithm, leaving it on its own to

find structure in its input. Unsupervised learning can be a goal in itself (discovering hidden

patterns in data) or a means towards an end (feature learning).

Machine Learning Applications

In classification, inputs are divided into two or more classes, and the learner must produce a

model that assigns unseen inputs to one or more (multi-label classification) of these classes. This

is typically tackled in a supervised manner. Spam filtering is an example of classification, where

the inputs are email (or other) messages and the classes are "spam" and "not spam".

In regression, also a supervised problem, the outputs are continuous rather than discrete.

In clustering, a set of inputs is to be divided into groups. Unlike in classification, the groups are

not known beforehand, making this typically an unsupervised task.

Density estimation finds the distribution of inputs in some space.

Dimensionality reduction simplifies inputs by mapping them into a lower dimensional space.

Topic modeling is a related problem, where a program is given a list of human language

documents and is tasked with finding out which documents cover similar topics.

Machine learning Approaches

1. Decision tree learning

Decision tree learning uses a decision tree as a predictive model, which maps observations about

an item to conclusions about the item's target value.

6CS4-22ML Lab Manual

Dept. of CSE, BIET Page 4

2. Association rule learning

Association rule learning is a method for discovering interesting relations between variables in

large databases.

3. Artificial neural networks

An artificial neural network (ANN) learning algorithm, usually called "neural network" (NN), is

a learning algorithm that is vaguely inspired by biological neural networks. Computations are

structured in terms of an interconnected group of artificial neurons, processing information using

a connectionist approach to computation. Modern neural networks are non-linear statistical data

modeling tools. They are usually used to model complex relationships between inputs and

outputs, to find patterns in data, or to capture the statistical structure in an unknown joint

probability distribution between observed variables.

4. Deep learning

Falling hardware prices and the development of GPUs for personal use in the last few years have

contributed to the development of the concept of deep learning which consists of multiple hidden

layers in an artificial neural network. This approach tries to model the way the human brain

processes light and sound into vision and hearing. Some successful applications of deep learning

are computer vision and speech Recognition.

5. Inductive logic programming

Inductive logic programming (ILP) is an approach to rule learning using logic Programming as a

uniform representation for input examples, background knowledge, and hypotheses. Given an

encoding of the known background knowledge and a set of examples represented as a logical

database of facts, an ILP system will derive a hypothesized logic program that entails all positive

and no negative examples. Inductive programming is a related field that considers any kind of

programming languages for representing hypotheses (and not only logic programming), such as

functional programs.

6. Support vector machines

Support vector machines (SVMs) are a set of related supervised learning methods used for

classification and regression. Given a set of training examples, each marked as belonging to one

6CS4-22ML Lab Manual

Dept. of CSE, BIET Page 5

of two categories, an SVM training algorithm builds a model that predicts whether a new

example falls into one category or the other.

7. Clustering

Cluster analysis is the assignment of a set of observations into subsets (called clusters) so that

observations within the same cluster are similar according to some pre designated criterion or

criteria, while observations drawn from different clusters are dissimilar. Different clustering

techniques make different assumptions on the structure of the data, often defined by some

similarity metric and evaluated for example by internal compactness (similarity between

members of the same cluster) and separation between different clusters. Other methods are based

on estimated density and graph connectivity. Clustering is a method of unsupervised learning,

and a common technique for statistical data analysis.

8. Bayesian networks

A Bayesian network, belief network or directed acyclic graphical model is a probabilistic

graphical model that represents a set of random variables and their conditional independencies

via a directed acyclic graph (DAG). For example, a Bayesian network could represent the

probabilistic relationships between diseases and symptoms. Given symptoms, the network can be

used to compute the probabilities of the presence of various diseases. Efficient algorithms exist

that perform inference and learning.

9. Reinforcement learning

Reinforcement learning is concerned with how an agent ought to take actions in an environment

so as to maximize some notion of long-term reward. Reinforcement learning algorithms attempt

to find a policy that maps states of the world to the actions the agent ought to take in those states.

Reinforcement learning differs from the supervised learning problem in that correct input/output

pairs are never presented, nor sub-optimal actions explicitly corrected.

10. Similarity and metric learning

In this problem, the learning machine is given pairs of examples that are considered similar and

pairs of less similar objects. It then needs to learn a similarity function (or a distance metric

function) that can predict if new objects are similar. It is sometimes used in Recommendation

systems.

6CS4-22ML Lab Manual

Dept. of CSE, BIET Page 6

11. Genetic algorithms

A genetic algorithm (GA) is a search heuristic that mimics the process of natural selection, and

uses methods such as mutation and crossover to generate new genotype in the hope of finding

good solutions to a given problem. In machine learning, genetic algorithms found some uses in

the 1980s and 1990s. Conversely, machine learning techniques have been used to improve the

performance of genetic and evolutionary algorithms.

12. Rule-based machine learning

Rule-based machine learning is a general term for any machine learning method that identifies,

learns, or evolves "rules" to store, manipulate or apply, knowledge. The defining characteristic of

a rule- based machine learner is the identification and utilization of a set of relational rules that

collectively represent the knowledge captured by the system. This is in contrast to other machine

learners that commonly identify a singular model that can be universally applied to any instance

in order to make a prediction. Rule-based machine learning approaches include learning

classifier systems, association rule learning, and artificial immune systems.

13. Feature selection approach

Feature selection is the process of selecting an optimal subset of relevant features for use in

model construction. It is assumed the data contains some features that are either redundant or

irrelevant, and can thus be removed to reduce calculation cost without incurring much loss of

information. Common optimality criteria include accuracy, similarity and information measures.

6CS4-22ML Lab Manual

Dept. of CSE, BIET Page 7

1. Implement and demonstrate the FIND-S algorithm for finding the most specific
hypothesis based on a given set of training data samples. Read the training data from a
.CSV file.

Find-s Algorithm :
1.Load Data set
2. Initialize h to the most specific hypothesis in H
3.For each positive training instance x

• For each attribute constraint ai in h

If the constraint ai in h is satisfied by x then do nothing
else replace ai in h by the next more general constraint that is satisfied by x

4.Output hypothesis h

Source Code:
import random
import csv

def read_data(filename):
with open(filename, 'r') as csvfile:
datareader = csv.reader(csvfile, delimiter=',')
traindata = []
for row in datareader:
traindata.append(row)

return (traindata)

h=['phi','phi','phi','phi','phi','phi'
data=read_data('finds.csv')
def isConsistent(h,d):

if len(h)!=len(d)-1:
print('Number of attributes are not same in hypothesis.')

return False
else:

matched=0
for i in range(len(h)):

if ((h[i]==d[i]) | (h[i]=='any')):
matched=matched+1

if matched==len(h):
return True

else:
return False

def makeConsistent(h,d):
for i in range(len(h)):

if((h[i] == 'phi')):
h[i]=d[i]

elif(h[i]!=d[i]):
h[i]='any'

6CS4-22ML Lab Manual

Dept. of CSE, BIET Page 8

return h
print('Begin : Hypothesis :',h)

6CS4-22ML Lab Manual

Dept. of CSE, BIET Page 9

print('==')
for d in data:

if d[len(d)-1]=='Yes':
if (isConsistent(h,d)):

pass
else:

h=makeConsistent(h,d)
print ('Training data :',d)
print ('Updated Hypothesis :',h)
print()
print(' ')

print('==')
print('maximally sepcific data set End: Hypothesis :',h)

Output:
Begin : Hypothesis : ['phi', 'phi', 'phi', 'phi', 'phi', 'phi']
==
Training data : ['Cloudy', 'Cold', 'High', 'Strong', 'Warm', 'Change', 'Yes']
Updated Hypothesis : ['Cloudy', 'Cold', 'High', 'Strong', 'Warm', 'Change']

Training data : ['Sunny', 'Warm', 'Normal', 'Strong', 'Warm', 'Same', 'Yes']
Updated Hypothesis : ['any', 'any', 'any', 'Strong', 'Warm', 'any']

Training data : ['Sunny', 'Warm', 'High', 'Strong', 'Warm', 'Same', 'Yes']
Updated Hypothesis : ['any', 'any', 'any', 'Strong', 'Warm', 'any']

Training data : ['Sunny', 'Warm', 'High', 'Strong', 'Cool', 'Change', 'Yes']
Updated Hypothesis : ['any', 'any', 'any', 'Strong', 'any', 'any']

Training data : ['Overcast', 'Cool', 'Normal', 'Strong', 'Warm', 'Same', 'Yes']
Updated Hypothesis : ['any', 'any', 'any', 'Strong', 'any', 'any']

==
maximally sepcific data set End: Hypothesis : ['any', 'any', 'any', 'Strong', 'any', 'any']

OR

import csv
def loadCsv(filename):
lines = csv.reader(open(filename, "r"))
dataset = list(lines)
for i in range(len(dataset)):

dataset[i] = dataset[i]
return dataset

attributes = ['Sky','Temp','Humidity','Wind','Water','Forecast']
print('Attributes =',attributes)
num_attributes = len(attributes)

6CS4-22ML Lab Manual

Dept. of CSE, BIET Page

filename = "finds.csv"
dataset = loadCsv(filename)
print(dataset)
hypothesis=['0'] * num_attributes
print("Intial Hypothesis")
print(hypothesis)
print("The Hypothesis are")
for i in range(len(dataset)):
target = dataset[i][-1]
if(target == 'Yes'):
for j in range(num_attributes):
if(hypothesis[j]=='0'):
hypothesis[j] = dataset[i][j]

if(hypothesis[j]!= dataset[i][j]):
hypothesis[j]='?'

print(i+1,'=',hypothesis)
print("Final Hypothesis")
print(hypothesis)

Output:
Attributes = ['Sky', 'Temp', 'Humidity', 'Wind', 'Water', 'Forecast']
[['sky', 'Airtemp', 'Humidity', 'Wind', 'Water', 'Forecast', 'WaterSport'],
['Cloudy', 'Cold', 'High', 'Strong', 'Warm', 'Change', 'Yes'],
['Sunny', 'Warm', 'Normal', 'Strong', 'Warm', 'Same', 'Yes'],
['Sunny', 'Warm', 'High', 'Strong', 'Warm', 'Same', 'Yes'],
['Cloudy', 'Cold', 'High', 'Strong', 'Warm', 'Change', 'No'],
['Sunny', 'Warm', 'High', 'Strong', 'Cool', 'Change', 'Yes'],
['Rain', 'Mild', 'High', 'Weak', 'Cool', 'Change', 'No'],
['Rain', 'Cool', 'Normal', 'Weak', 'Cool', 'Same', 'No'],
['Overcast', 'Cool', 'Normal', 'Strong', 'Warm', 'Same', 'Yes']]
Intial Hypothesis ['0',
'0', '0', '0', '0', '0']
The Hypothesis are
2 = ['Cloudy', 'Cold', 'High', 'Strong', 'Warm', 'Change']
3 = ['?', '?', '?', 'Strong', 'Warm', '?']
4 = ['?', '?', '?', 'Strong', 'Warm', '?']
6 = ['?', '?', '?', 'Strong', '?', '?']
9 = ['?', '?', '?', 'Strong', '?', '?']
Final Hypothesis
['?', '?', '?', 'Strong', '?', '?']

6CS4-22ML Lab Manual

Dept. of CSE, BIET Page

2. For a given set of training data examples stored in a .CSV file, implement and
demonstrate the Candidate-Elimination algorithm to output a description of the set of all
hypotheses consistent with the training examples.

Candidate-Elimination Algorithm:
1.Load data set
2.G <-maximally general hypotheses in H
3.S <- maximally specific hypotheses in H

4.For each training example

d=<x,c(x)> Case 1 : If d is a

positive example

Remove from G any hypothesis that is
inconsistent with d For each hypothesis s in S
that is not consistent with d

• Remove s from S.
• Add to S all minimal generalizations h of s such that

• h consistent with d
• Some member of G is more general than h

• Remove from S any hypothesis that is more general than another
hypothesis in S

Case 2: If d is a negative example

Remove from S any hypothesis that is
inconsistent with d For each hypothesis g in G
that is not consistent with d

*Remove g from G.
*Add to G all minimal specializations h of g such that

o h consistent with d

o Some member of S is more specific than h
• Remove from G any hypothesis that is less general than another
hypothesis in G

Source Code:

import numpy as np

6CS4-22ML Lab Manual

Dept. of CSE, BIET Page

import pandas as pd

data = pd.DataFrame(data=pd.read_csv('finds1.csv'))
concepts = np.array(data.iloc[:,0:-1])

target = np.array(data.iloc[:,-1])
def learn(concepts, target):
specific_h = concepts[0].copy()
print("initialization of specific_h and general_h")
print(specific_h)
general_h = [["?" for i in range(len(specific_h))] for i in range(len(specific_h))]
print(general_h)
for i, h in enumerate(concepts):
if target[i] == "Yes":
for x in range(len(specific_h)):
if h[x] != specific_h[x]:
specific_h[x] = '?'

6CS4-22ML Lab Manual

Dept. of CSE, BIET Page

general_h[x][x] = '?'
if target[i] == "No":
for x in range(len(specific_h)):
if h[x] != specific_h[x]:
general_h[x][x] = specific_h[x]

else:
general_h[x][x] = '?'

print(" steps of Candidate Elimination Algorithm",i+1)
print("Specific_h ",i+1,"\n ")
print(specific_h)
print("general_h ", i+1, "\n ")
print(general_h)

indices = [i for i, val in enumerate(general_h) if val == ['?', '?', '?', '?', '?', '?']]
for i in indices:

general_h.remove(['?', '?', '?', '?', '?', '?'])

return specific_h, general_h
s_final, g_final = learn(concepts, target)
print("Final Specific_h:", s_final, sep="\n")
print("Final General_h:", g_final, sep="\n")

OUTPUT
initialization of specific_h and general_h
['Cloudy' 'Cold' 'High' 'Strong' 'Warm' 'Change']
[['?', '?', '?', '?', '?', '?'], ['?', '?', '?', '?', '?', '?'], ['?', '?', '?', '?', '?', '?'], ['?', '?', '?', '?', '?', '?'], ['?', '?', '?',
'?', '?', '?'], ['?', '?', '?', '?', '?', '?']]
steps of Candidate Elimination Algorithm 8
Specific_h 8

['?' '?' '?' 'Strong' '?' '?']
general_h 8

[['?', '?', '?', '?', '?', '?'], ['?', '?', '?', '?', '?', '?'], ['?', '?', '?', '?', '?', '?'], ['?', '?', '?', 'Strong', '?', '?'], ['?',
'?', '?', '?', '?', '?'], ['?', '?', '?', '?', '?', '?']]
Final Specific_h:
['?' '?' '?' 'Strong' '?' '?']
Final General_h:
[['?', '?', '?', 'Strong', '?', '?']]

6CS4-22ML Lab Manual

Dept. of CSE, BIET Page

Outlook

3. Write a program to demonstrate the working of the decision tree based ID3 algorithm.
Use an appropriate data set for building the decision tree and apply this knowledge to
classify a new sample.

sunny overcast rainy

Humidity yes Windy

High normal false true

no yes yes no

6CS4-22ML Lab Manual

Dept. of CSE, BIET Page

Source Code:

import numpy as np
import math
from data_loader import read_data
class Node:
def init (self, attribute):
self.attribute = attribute
self.children = []
self.answer = ""

def str (self):
return self.attribute

def subtables(data, col, delete):
dict = {}
items = np.unique(data[:, col])
count = np.zeros((items.shape[0], 1), dtype=np.int32)

for x in range(items.shape[0]):
for y in range(data.shape[0]):
if data[y, col] == items[x]:
count[x] += 1

for x in range(items.shape[0]):
dict[items[x]] = np.empty((int(count[x]), data.shape[1]), dtype="|S32")
pos = 0
for y in range(data.shape[0]):
if data[y, col] == items[x]:
dict[items[x]][pos] = data[y]
pos += 1

if delete:
dict[items[x]] = np.delete(dict[items[x]], col, 1)

return items, dict

def entropy(S):
items = np.unique(S)
if items.size == 1:
return 0

counts = np.zeros((items.shape[0], 1))
sums = 0
for x in range(items.shape[0]):
counts[x] = sum(S == items[x]) / (S.size * 1.0)

for count in counts:
sums += -1 * count * math.log(count, 2)

return sums
def gain_ratio(data, col):
items, dict = subtables(data, col, delete=False)
total_size = data.shape[0]
entropies = np.zeros((items.shape[0], 1))
intrinsic = np.zeros((items.shape[0], 1))
for x in range(items.shape[0]):
ratio = dict[items[x]].shape[0]/(total_size * 1.0)
entropies[x] = ratio * entropy(dict[items[x]][:, -1])
intrinsic[x] = ratio * math.log(ratio, 2)

6CS4-22ML Lab Manual

Dept. of CSE, BIET Page

total_entropy = entropy(data[:, -1])
iv = -1 * sum(intrinsic)

for x in range(entropies.shape[0]):
total_entropy -= entropies[x]

return total_entropy / iv
def create_node(data, metadata):
#TODO: Co jeśli information gain jest zerowe?
if (np.unique(data[:, -1])).shape[0] == 1:
node = Node("")
node.answer = np.unique(data[:, -1])[0]
return node

gains = np.zeros((data.shape[1] - 1, 1))

for col in range(data.shape[1] - 1):
gains[col] = gain_ratio(data, col)

split = np.argmax(gains)

node = Node(metadata[split])
metadata = np.delete(metadata, split, 0)
items, dict = subtables(data, split, delete=True)

for x in range(items.shape[0]):
child = create_node(dict[items[x]], metadata)
node.children.append((items[x], child))

return node

def empty(size):
s = ""
for x in range(size):
s += " "

return s
def print_tree(node, level):
if node.answer != "":
print(empty(level), node.answer)
return

print(empty(level), node.attribute)

for value, n in node.children:
print(empty(level + 1), value)
print_tree(n, level + 2)

metadata, traindata = read_data("tennis.data")
data = np.array(traindata)

node = create_node(data, metadata)

print_tree(node, 0)

OUTPUT:
outlook
overcast
b'yes'

rain

6CS4-22ML Lab Manual

Dept. of CSE, BIET Page

wind
b'strong'
b'no'
b'weak'
b'yes'

sunny
humidity
b'high'
b'no'

b'normal'
b'yes'

OR
import pandas as pd
import numpy as np
dataset= pd.read_csv('playtennis.csv',names=['outlook','temperature','humidity','wind','class',])
def entropy(target_col):
elements,counts = np.unique(target_col,return_counts = True)
entropy = np.sum([(-counts[i]/np.sum(counts))*np.log2(counts[i]/np.sum(counts)) for i in

range(len(elements))])
return entropy

def InfoGain(data,split_attribute_name,target_name="class"):
total_entropy = entropy(data[target_name])
vals,counts= np.unique(data[split_attribute_name],return_counts=True)
Weighted_Entropy =

np.sum([(counts[i]/np.sum(counts))*entropy(data.where(data[split_attribute_name]==vals[i]).dr
opna()[target_name]) for i in range(len(vals))])
Information_Gain = total_entropy - Weighted_Entropy
return Information_Gain

def ID3(data,originaldata,features,target_attribute_name="class",parent_node_class = None):
if len(np.unique(data[target_attribute_name])) <= 1:
return np.unique(data[target_attribute_name])[0]

elif len(data)==0:
return

np.unique(originaldata[target_attribute_name])[np.argmax(np.unique(originaldata[target_attribut
e_name],return_counts=True)[1])]
elif len(features) ==0:
return parent_node_class

else:
parent_node_class =

np.unique(data[target_attribute_name])[np.argmax(np.unique(data[target_attribute_name],return
_counts=True)[1])]

item_values = [InfoGain(data,feature,target_attribute_name) for feature in features] #Return
the information gain values for the features in the dataset

best_feature_index = np.argmax(item_values)
best_feature = features[best_feature_index]
tree = {best_feature:{}}
features = [i for i in features if i != best_feature]
for value in np.unique(data[best_feature]):
value = value
sub_data = data.where(data[best_feature] == value).dropna()
subtree = ID3(sub_data,dataset,features,target_attribute_name,parent_node_class)
tree[best_feature][value] = subtree

return(tree)
tree = ID3(dataset,dataset,dataset.columns[:-1])
print(' \nDisplay Tree\n',tree)

OUTPUT:
Display Tree
{'outlook': {'Overcast': 'Yes', 'Rain': {'wind': {'Strong': 'No', 'Weak': 'Yes'}}, 'Sunny':
{'humidity': {'High': 'No', 'Normal': 'Yes'}}}}

6CS4-22ML Lab Manual

Dept. of CSE, BIET Page

4. Build an Artificial Neural Network by implementing the Back propagation Algorithm
and test the same using appropriate data sets.

Back propagation Algorithm:
1. Load data set

2.Assign all network inputs and output

3. Initialize all weights with small random numbers,

typically between -1 and 1 repeat

for every pattern in the

training set Present the

pattern to the network

// Propagated the input forward through

the network: for each layer in the

network
for every node in the layer
1.Calculate the weight sum of the inputs to the node

2.Add the threshold to the sum

3.Calculate the activation for

the node end

end

6CS4-22ML Lab Manual

Dept. of CSE, BIET Page

// Propagate the errors backward through

the network for every node in the

output layer

calculate the error

signal end

for all hidden layers
for every node in the layer

1.Calculate the node's signal error

6CS4-22ML Lab Manual

Dept. of CSE, BIET Page

2.Update each node's weight in the

network end
end

// Calculate Global Error

Calculate the Error

Function

end

while ((maximum number of iterations < than

specified) AND (Error Function is > than

specified))

 Input layer with two inputs neurons
 One hidden layer with two neurons
 Output layer with a single neuron

Source Code:

import numpy as np
X = np.array(([2, 9], [1, 5], [3, 6]), dtype=float)
y = np.array(([92], [86], [89]), dtype=float)
X = X/np.amax(X,axis=0) # maximum of X array longitudinally y = y/100

#Sigmoid Function

6CS4-22ML Lab Manual

Dept. of CSE, BIET Page

def sigmoid (x):
return (1/(1 + np.exp(-x)))

#Derivative of Sigmoid Function
def derivatives_sigmoid(x):
return x * (1 - x)

#Variable initialization
epoch=7000 #Setting training iterations
lr=0.1 #Setting learning rate
inputlayer_neurons = 2 #number of features in data set
hiddenlayer_neurons = 3 #number of hidden layers neurons
output_neurons = 1 #number of neurons at output layer

6CS4-22ML Lab Manual

Dept. of CSE, BIET Page

#weight and bias initialization
wh=np.random.uniform(size=(inputlayer_neurons,hiddenlayer_neurons))
bh=np.random.uniform(size=(1,hiddenlayer_neurons))
wout=np.random.uniform(size=(hiddenlayer_neurons,output_neurons))

bout=np.random.uniform(size=(1,output_neurons))
draws a random range of numbers uniformly of dim x*y
#Forward Propagation
for i in range(epoch):
hinp1=np.dot(X,wh)
hinp=hinp1 + bh
hlayer_act = sigmoid(hinp)
outinp1=np.dot(hlayer_act,wout)
outinp= outinp1+ bout
output = sigmoid(outinp)

#Backpropagation
EO = y-output
outgrad = derivatives_sigmoid(output)
d_output = EO* outgrad
EH = d_output.dot(wout.T)
hiddengrad = derivatives_sigmoid(hlayer_act)

#how much hidden layer wts contributed to error
d_hiddenlayer = EH * hiddengrad
wout += hlayer_act.T.dot(d_output) *lr

dotproduct of nextlayererror and currentlayerop
bout += np.sum(d_output, axis=0,keepdims=True) *lr
wh += X.T.dot(d_hiddenlayer) *lr

#bh += np.sum(d_hiddenlayer, axis=0,keepdims=True) *lr
print("Input: \n" + str(X))
print("Actual Output: \n" + str(y))
print("Predicted Output: \n" ,output)

Output:
Input:
[[0.66666667 1.]
[0.33333333 0.55555556]
[1. 0.66666667]]

Actual Output:
[[0.92]
[0.86]
[0.89]]
Predicted Output:
[[0.89559591]
[0.88142069]
[0.8928407]]

6CS4-22ML Lab Manual

Dept. of CSE, BIET Page

5. Write a program to implement the naïve Bayesian classifier for a sample training data
set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data
sets.

Problem statement:
– Given features X1 ,X2 ,…,Xn
– Predict a label Y
X = (Rainy, Hot, High, False)
y = No

Or

 P(H) is the probability of hypothesis H being true. This is known as the prior probability.
 P(E) is the probability of the evidence(regardless of the hypothesis).
 P(E|H) is the probability of the evidence given that hypothesis is true.
 P(H|E) is the probability of the hypothesis given that the evidence is there.

 Prior, conditional and joint probability for random variables

 Prior probability: P(x)

 Conditional probability: P(x1 |x2), P(x2 |x1)

 Joint probability:

 Relationship:

x (x1 , x2), P(x) P(x1 ,x2)

P(x ,x) P(x |x)P(x) P(x |x)P(x)
1 2 2 1 1 1 2 2

 Independence: P(x |x) P(x), P(x |x) P(x), P(x ,x) P(x)P(x)

Example:
2 1

• Digit
Recognition

2 1 2 1 1 2 1 2

• X ,…,X {0,1} (Black vs. White pixels)
1 n

• Y {5,6} (predict whether a digit is a 5 or a 6)

5

Posterior = Likelihood * prior
Evidence

•
Classifier

P(c|x) P(x|c)P(c)
P(x)

6CS4-22ML Lab Manual

Dept. of CSE, BIET Page

Naïve Bayesian classifier Algorthim:

Step 1: Convert the data set into a frequency table

Step 2: Create Likelihood table by finding the probabilities like Overcast probability = 0.29 and
probability of playing is 0.64.

Step 3: Now, use Naive Bayesian equation to calculate the posterior probability for each class.
The class with the highest posterior probability is the outcome of prediction.

Problem: Players will play if weather is sunny. Is this statement is correct?

We can solve it using above discussed method of posterior probability.

P(Yes | Sunny) = P(Sunny | Yes) * P(Yes) / P (Sunny)

Here we have P (Sunny |Yes) = 3/9 = 0.33, P(Sunny) = 5/14 = 0.36, P(Yes)= 9/14 = 0.64

Now, P (Yes | Sunny) = 0.33 * 0.64 / 0.36 = 0.60, which has higher probability.

Naive Bayes uses a similar method to predict the probability of different class based on various
attributes. This algorithm is mostly used in text classification and with problems having multiple
classes.

6CS4-22ML Lab Manual

Dept. of CSE, BIET Page

Example: Continuous-valued Features
Temperature is naturally of continuous value.

Yes: 25.2, 19.3, 18.5, 21.7, 20.1, 24.3, 22.8, 23.1, 19.8
No: 27.3, 30.1, 17.4, 29.5, 15.1

Estimate mean and variance for each class

 1
N

N

n1
xn, 2 1

N

N

n1
(xn)2

Yes
No

21.64,
23.88,

Yes
No

 2.35
 7.09

Learning Phase: output two Gaussian models for P(temp|C)
ˆ 1 (x 21.64)2 1 (x 21.64)2
P(x |Yes) exp

P̂(x | No)

 exp

7.09 2 27.092 7.09 2 50.25

Source Code:

import csv
import random
import math

def loadCsv(filename):
lines = csv.reader(open(filename, "r"))
dataset = list(lines)
for i in range(len(dataset)):

dataset[i] = [float(x) for x in dataset[i]]
return dataset

def splitDataset(dataset, splitRatio):
trainSize = int(len(dataset) * splitRatio)
trainSet = []
copy = list(dataset)
while len(trainSet) < trainSize:

index = random.randrange(len(copy))
trainSet.append(copy.pop(index))

return [trainSet, copy]

def separateByClass(dataset):
separated = {}
for i in range(len(dataset)):

vector = dataset[i]
if (vector[-1] not in separated):

separated[vector[-1]] = []
separated[vector[-1]].append(vector)

return separated

2.35 2
 2 2.352

 2.35 2
 11.09

1 e

xp (x 23.88)2 1 e

xp (x 23.88)2

6CS4-22ML Lab Manual

Dept. of CSE, BIET Page

def mean(numbers):
return sum(numbers)/float(len(numbers))

def stdev(numbers):
avg = mean(numbers)
variance = sum([pow(x-avg,2) for x in numbers])/float(len(numbers)-1)
return math.sqrt(variance)

def summarize(dataset):
summaries = [(mean(attribute), stdev(attribute)) for attribute in zip(*dataset)]
del summaries[-1]
return summaries

def summarizeByClass(dataset):
separated = separateByClass(dataset)
summaries = {}
for classValue, instances in separated.items():

summaries[classValue] = summarize(instances)
return summaries

def calculateProbability(x, mean, stdev):
exponent = math.exp(-(math.pow(x-mean,2)/(2*math.pow(stdev,2))))
return (1 / (math.sqrt(2*math.pi) * stdev)) * exponent

def calculateClassProbabilities(summaries, inputVector):
probabilities = {}
for classValue, classSummaries in summaries.items():

probabilities[classValue] = 1
for i in range(len(classSummaries)):

mean, stdev = classSummaries[i]
x = inputVector[i]
probabilities[classValue] *= calculateProbability(x, mean, stdev)

return probabilities

def predict(summaries, inputVector):
probabilities = calculateClassProbabilities(summaries, inputVector)
bestLabel, bestProb = None, -1
for classValue, probability in probabilities.items():

if bestLabel is None or probability > bestProb:
bestProb = probability
bestLabel = classValue

return bestLabel

def getPredictions(summaries, testSet):
predictions = []
for i in range(len(testSet)):

result = predict(summaries, testSet[i])

6CS4-22ML Lab Manual

Dept. of CSE, BIET Page

predictions.append(result)
return predictions

def getAccuracy(testSet, predictions):
correct = 0
for i in range(len(testSet)):

if testSet[i][-1] == predictions[i]:
correct += 1

return (correct/float(len(testSet))) * 100.0

def main():
filename = 'data.csv'
splitRatio = 0.67
dataset = loadCsv(filename)
trainingSet, testSet = splitDataset(dataset, splitRatio)
print('Split {0} rows into train={1} and test={2} rows'.format(len(dataset),

len(trainingSet), len(testSet)))

prepare model
summaries = summarizeByClass(trainingSet)
test model
predictions = getPredictions(summaries, testSet)
accuracy = getAccuracy(testSet, predictions)
print('Accuracy: {0}%'.format(accuracy))

main()

OUTPUT :

Split 306 rows into train=205 and test=101 rows
Accuracy: 72.27722772277228%

6CS4-22ML Lab Manual

Dept. of CSE, BIET Page

6. Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier
model to perform this task. Built-in Java classes/API can be used to write the program.
Calculate the accuracy, precision, and recall for your data set.

The dataset is divided into two parts, namely, feature matrix and the response vector.
 Feature matrix contains all the vectors(rows) of dataset in which each vector consists of

the value of dependent features. In above dataset, features are ‘Outlook’, ‘Temperature’,
‘Humidity’ and ‘Windy’.

 Response vector contains the value of class variable(prediction or output) for each row of
feature matrix. In above dataset, the class variable name is ‘Play golf’.

Types of Naive Bayes Algorithm
Gaussian Naive Bayes
When attribute values are continuous, an assumption is made that the values associated with each
class are distributed according to Gaussian i.e., Normal Distribution.
If in our data, an attribute say “x” contains continuous data. We first segment the data by the
class and then compute mean & Variance of each class.

MultiNomial Naive Bayes
MultiNomial Naive Bayes is preferred to use on data that is multinomially distributed. It is one
of the standard classic algorithms. Which is used in text categorization (classification). Each
event in text classification represents the occurrence of a word in a document.

6CS4-22ML Lab Manual

Dept. of CSE, BIET Page

Bernoulli Naive Bayes
Bernoulli Naive Bayes is used on the data that is distributed according to multivariate Bernoulli
distributions.i.e., multiple features can be there, but each one is assumed to be a binary-valued
(Bernoulli, boolean) variable. So, it requires features to be binary valued.

6CS4-22ML Lab Manual

Dept. of CSE, BIET Page

Source Code:

import pandas as pd

msg=pd.read_csv('naivetext1.csv',names=['message','label'])
print('The dimensions of the dataset',msg.shape)
msg['labelnum']=msg.label.map({'pos':1,'neg':0})
X=msg.message
y=msg.labelnum
print(X)
print(y)

from sklearn.model_selection import train_test_split
xtrain,xtest,ytrain,ytest=train_test_split(X,y)
print(xtest.shape)
print(xtrain.shape)
print(ytest.shape)
print(ytrain.shape)

from sklearn.feature_extraction.text import CountVectorizer
count_vect = CountVectorizer()
xtrain_dtm = count_vect.fit_transform(xtrain)
xtest_dtm=count_vect.transform(xtest)
from sklearn.naive_bayes import MultinomialNB
clf = MultinomialNB().fit(xtrain_dtm,ytrain)
predicted = clf.predict(xtest_dtm)

from sklearn import metrics
print('Accuracy metrics')
print('Accuracy of the classifer is',metrics.accuracy_score(ytest,predicted))
print('Confusion matrix')
print(metrics.confusion_matrix(ytest,predicted))
print('Recall and Precison ')
print(metrics.recall_score(ytest,predicted))
print(metrics.precision_score(ytest,predicted))

Output:

The dimensions of the dataset (18, 2)
0 I love this sandwich
1 This is an amazing place
2 I feel very good about these beers
3 This is my best work
4 What an awesome view
5 I do not like this restaurant

6CS4-22ML Lab Manual

Dept. of CSE, BIET Page

6 I am tired of this stuff

6CS4-22ML Lab Manual

Dept. of CSE, BIET Page

7 I can't deal with this
8 He is my sworn enemy
9 My boss is horrible
10 This is an awesome place
11 I do not like the taste of this juice
12 I love to dance
13 I am sick and tired of this place
14 What a great holiday
15 That is a bad locality to stay
16 We will have good fun tomorrow
17 I went to my enemy's house today
Name: message, dtype: object
0 1
1 1
2 1
3 1
4 1
5 0
6 0
7 0
8 0
9 0
10 1
11 0
12 1
13 0
14 1
15 0
16 1
17 0
Name: labelnum, dtype: int64
(5,)
(13,)
(5,)
(13,)
Accuracy metrics
Accuracy of the classifer is 0.8
Confusion matrix
[[3 1]
[0 1]]
Recall and Precison
1.0
0.5

6CS4-22ML Lab Manual

Dept. of CSE, BIET Page

7. Write a program to construct a Bayesian network considering medical data. Use this
model to demonstrate the diagnosis of heart patients using standard Heart Disease
Data Set. You can use Java/Python ML library classes/API.

Attribute Information:
-- Only 14 used
-- 1. #3 (age)
-- 2. #4 (sex)
-- 3. #9 (cp)
-- 4. #10 (trestbps)
-- 5. #12 (chol)
-- 6. #16 (fbs)
-- 7. #19 (restecg)
-- 8. #32 (thalach)
-- 9. #38 (exang)
-- 10. #40 (oldpeak)
-- 11. #41 (slope)
-- 12. #44 (ca)
-- 13. #51 (thal)
-- 14. #58 (num)

Source Code:

import numpy as np
from urllib.request import urlopen
import urllib
import pandas as pd
from pgmpy.inference import VariableElimination
from pgmpy.models import BayesianModel
from pgmpy.estimators import MaximumLikelihoodEstimator, BayesianEstimator

names = ['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach', 'exang', 'oldpeak', 'slope', 'ca',
'thal', 'heartdisease']
heartDisease = pd.read_csv('heart.csv', names = names)
heartDisease = heartDisease.replace('?', np.nan)

ML Lab ML

Dept. of CSE Page

model = BayesianModel([('age', 'trestbps'), ('age', 'fbs'), ('sex', 'trestbps'), ('exang',
'trestbps'),('trestbps','heartdisease'),('fbs','heartdisease'),('heartdisease','restecg'),
('heartdisease','thalach'), ('heartdisease','chol')])

model.fit(heartDisease, estimator=MaximumLikelihoodEstimator)
from pgmpy.inference import VariableElimination
HeartDisease_infer = VariableElimination(model)

q = HeartDisease_infer.query(variables=['heartdisease'], evidence={'age': 37, 'sex' :0})
print(q['heartdisease'])

OUTPUT:
╒════════════════╤════
│ heartdisease │ phi(heartdisease) │
╞══════════════════════
│ heartdisease_0 │ 0.5593 │
├─────────────────────┤
│ heartdisease_1 │ 0.4407 │
╘════════════════╧═════

ML Lab ML

Dept. of CSE Page

8. Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set
for clustering using k-Means algorithm. Compare the results of these two algorithms and
comment on the quality of clustering. You can add Java/Python ML library classes/API in
the program.

K-Means Algorithm
1. Load data set
2. Clusters the data into k groups where k is predefined.
3. Select k points at random as cluster centers.
4. Assign objects to their closest cluster center according to the Euclidean

distance function.
5. Calculate the centroid or mean of all objects in each cluster.
6. Repeat steps 3, 4 and 5 until the same points are assigned to each cluster in consecutive

rounds.

Example:
Suppose we want to group the visitors to a website using just their age (one-dimensional
space) as follows:

n = 19
15,15,16,19,19,20,20,21,22,28,35,40,41,42,43,44,60,61,65

Initial clusters (random centroid or average):
k = 2
c1 = 16
c2 = 22

ML Lab ML

Dept. of CSE Page

Iteration 1:
c1 = 15.33
c2 = 36.25

xi c1 c2 Distance 1 Distance 2 Nearest
Cluster

New
Centroid

15 16 22 1 7 1
15.3315 16 22 1 7 1

16 16 22 0 6 1
19 16 22 9 3 2

36.25

19 16 22 9 3 2
20 16 22 16 2 2
20 16 22 16 2 2
21 16 22 25 1 2
22 16 22 36 0 2
28 16 22 12 6 2
35 16 22 19 13 2
40 16 22 24 18 2
41 16 22 25 19 2
42 16 22 26 20 2
43 16 22 27 21 2
44 16 22 28 22 2
60 16 22 44 38 2
61 16 22 45 39 2
65 16 22 49 43 2

Iteration 2:
c1 = 18.56
c2 = 45.90

xi c1 c2 Distance 1 Distance
2

Nearest
Cluster

New
Centroid

15 15.33 36.25 0.33 21.25 1

18.56

15 15.33 36.25 0.33 21.25 1
16 15.33 36.25 0.67 20.25 1
19 15.33 36.25 3.67 17.25 1
19 15.33 36.25 3.67 17.25 1
20 15.33 36.25 4.67 16.25 1
20 15.33 36.25 4.67 16.25 1
21 15.33 36.25 5.67 15.25 1
22 15.33 36.25 6.67 14.25 1
28 15.33 36.25 12.67 8.25 2

45.935 15.33 36.25 19.67 1.25 2

ML Lab ML

Dept. of CSE Page

40 15.33 36.25 24.67 3.75 2
41 15.33 36.25 25.67 4.75 2
42 15.33 36.25 26.67 5.75 2
43 15.33 36.25 27.67 6.75 2
44 15.33 36.25 28.67 7.75 2
60 15.33 36.25 44.67 23.75 2
61 15.33 36.25 45.67 24.75 2
65 15.33 36.25 49.67 28.75 2

Iteration 3:
c1 = 19.50
c2 = 47.89

xi c1 c2 Distance 1 Distance 2 Nearest
Cluster

New
Centroid

15 18.56 45.9 3.56 30.9 1

19.50

15 18.56 45.9 3.56 30.9 1
16 18.56 45.9 2.56 29.9 1
19 18.56 45.9 0.44 26.9 1
19 18.56 45.9 0.44 26.9 1
20 18.56 45.9 1.44 25.9 1
20 18.56 45.9 1.44 25.9 1
21 18.56 45.9 2.44 24.9 1
22 18.56 45.9 3.44 23.9 1
28 18.56 45.9 9.44 17.9 1
35 18.56 45.9 16.44 10.9 2

47.89

40 18.56 45.9 21.44 5.9 2
41 18.56 45.9 22.44 4.9 2
42 18.56 45.9 23.44 3.9 2
43 18.56 45.9 24.44 2.9 2
44 18.56 45.9 25.44 1.9 2
60 18.56 45.9 41.44 14.1 2
61 18.56 45.9 42.44 15.1 2
65 18.56 45.9 46.44 19.1 2

Iteration 4:
c1 = 19.50
c2 = 47.89

xi c1 c2 Distance
1

Distance
2

Nearest
Cluster

New
Centroid

15 19.5 47.89 4.50 32.89 1
19.5015 19.5 47.89 4.50 32.89 1

ML Lab ML

Dept. of CSE Page

16 19.5 47.89 3.50 31.89 1
19 19.5 47.89 0.50 28.89 1
19 19.5 47.89 0.50 28.89 1
20 19.5 47.89 0.50 27.89 1
20 19.5 47.89 0.50 27.89 1
21 19.5 47.89 1.50 26.89 1
22 19.5 47.89 2.50 25.89 1
28 19.5 47.89 8.50 19.89 1
35 19.5 47.89 15.50 12.89 2

47.89

40 19.5 47.89 20.50 7.89 2
41 19.5 47.89 21.50 6.89 2
42 19.5 47.89 22.50 5.89 2
43 19.5 47.89 23.50 4.89 2
44 19.5 47.89 24.50 3.89 2
60 19.5 47.89 40.50 12.11 2
61 19.5 47.89 41.50 13.11 2
65 19.5 47.89 45.50 17.11 2

No change between iterations 3 and 4 has been noted. By using clustering, 2 groups have been

identified 15-28 and 35-65. The initial choice of centroids can affect the output clusters, so the

algorithm is often run multiple times with different starting conditions in order to get a fair

view of what the clusters should be.

EM algorithm
These are the two basic steps of the EM algorithm, namely E Step or Expectation
Step or Estimation Step andM Step or Maximization Step.

 Estimation step:
 initialize , and by some random values, or by K means clustering

results or by hierarchical clustering results.
 Then for those given parameter values, estimate the value of the latent variables

(i.e)
 Maximization Step:

 Update the value of the parameters(i.e. , and) calculated using ML
method.

1. Load data set
2. Initialize the mean , the covariance matrix and the mixing coefficients

1. by some random values. (or other values)
3. Compute the values for all k.

ML Lab ML

Dept. of CSE Page

4. Again Estimate all the parameters using the current values.
5. Compute log-likelihood function.
6. Put some convergence criterion
7. If the log-likelihood value converges to some value (or if all the parameters converge

to some values) then stop, else return to Step 3.

Source Code:

import numpy as np
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
from sklearn.mixture import GaussianMixture
import pandas as pd

X=pd.read_csv("kmeansdata.csv")

x1 = X['Distance_Feature'].values
x2 = X['Speeding_Feature'].values

X = np.array(list(zip(x1, x2))).reshape(len(x1), 2)

plt.plot()
plt.xlim([0, 100])
plt.ylim([0, 50])
plt.title('Dataset')
plt.scatter(x1, x2)
plt.show()

#code for EM
gmm = GaussianMixture(n_components=3)
gmm.fit(X)
em_predictions = gmm.predict(X)
print("\nEM predictions")
print(em_predictions)
print("mean:\n",gmm.means_)
print('\n')
print("Covariances\n",gmm.covariances_)
print(X)
plt.title('Exceptation Maximum')
plt.scatter(X[:,0], X[:,1],c=em_predictions,s=50)
plt.show()

#code for Kmeans
import matplotlib.pyplot as plt1
kmeans = KMeans(n_clusters=3)

ML Lab ML

Dept. of CSE Page

kmeans.fit(X)

print(kmeans.cluster_centers_)
print(kmeans.labels_)

plt.title('KMEANS')
plt1.scatter(X[:,0], X[:,1], c=kmeans.labels_, cmap='rainbow')
plt1.scatter(kmeans.cluster_centers_[:,0] ,kmeans.cluster_centers_[:,1], color='black')

OUTPUT:

EM predictions
[0 0 0 1 0 1 1 1 2 1 2 2 1 1 2 1 2 1 0 1 0 1 1]
mean:
[[57.70629058 25.73574491]
[52.12044022 22.46250453]
[46.4364858 39.43288647]]

Covariances
[[[83.51878796 14.926902]
[14.926902 2.70846907]]

[[29.95910352 15.83416554]
[15.83416554 67.01175729]]

[[79.34811849 29.55835938]
[29.55835938 18.17157304]]]
[[71.24 28.]
[52.53 25.]
[64.54 27.]
[55.69 22.]
[54.58 25.]
[41.91 10.]
[58.64 20.]
[52.02 8.]
[31.25 34.]
[44.31 19.]
[49.35 40.]
[58.07 45.]

ML Lab ML

Dept. of CSE Page

[44.22 22.]
[55.73 19.]
[46.63 43.]
[52.97 32.]
[46.25 35.]
[51.55 27.]
[57.05 26.]
[58.45 30.]
[43.42 23.]
[55.68 37.]
[55.15 18.]

centroid and predications
[[57.74090909 24.27272727]
[48.6 38.]
[45.176 16.4]]
[0 0 0 0 0 2 0 2 1 2 1 1 2 0 1 1 1 0 0 0 2 1 0]

ML Lab ML

Dept. of CSE Page

9. Write a program to implement k-Nearest Neighbour algorithm to classify the iris data
set. Print both correct and wrong predictions. Java/Python ML library classes can be used
for this problem.

• Principle: points (documents) that are close in the space belong to the same class

Distance Metrics

ML Lab ML

Dept. of CSE Page

K-Nearest-Neighbour Algorithm:

1. Load the data
2. Initialize the value of k
3. For getting the predicted class, iterate from 1 to total number of training data points

1. Calculate the distance between test data and each row of training data. Here we will
use Euclidean distance as our distance metric since it’s the most popular method.
The other metrics that can be used are Chebyshev, cosine, etc.

2. Sort the calculated distances in ascending order based on distance values
3. Get top k rows from the sorted array
4. Get the most frequent class of these rows i.e Get the labels of the selected K entries
5. Return the predicted class

 If regression, return the mean of the K labels
 If classification, return the mode of the K labels

Confusion matrix:
Note,
• Class 1 : Positive
• Class 2 : Negative

• Positive (P) : Observation is positive (for example: is an apple).
• Negative (N) : Observation is not positive (for example: is not an apple).
• True Positive (TP) : Observation is positive, and is predicted to be positive.
• False Negative (FN) : Observation is positive, but is predicted negative. (Also known as a
"Type II error.")
• True Negative (TN) : Observation is negative, and is predicted to be negative.
• False Positive (FP) : Observation is negative, but is predicted positive. (Also known as a
"Type I error.")

ML Lab ML

Dept. of CSE Page

Example :

Accuracy: Overall, how often is the classifier correct?
(TP+TN)/total = (100+50)/165 = 0.91

Misclassification Rate: Overall, how often is it wrong?
(FP+FN)/total = (10+5)/165 = 0.09
equivalent to 1 minus Accuracy
also known as "Error Rate“

True Positive Rate: When it's actually yes, how often does it predict yes?
TP/actual yes = 100/105 = 0.95
also known as "Sensitivity" or "Recall"

False Positive Rate: When it's actually no, how often does it predict yes?
FP/actual no = 10/60 = 0.17

True Negative Rate: When it's actually no, how often does it predict no?
TN/actual no = 50/60 = 0.83
equivalent to 1 minus False Positive Rate
also known as "Specificity“

Precision: When it predicts yes, how often is it correct?
TP/predicted yes = 100/110 = 0.91

Prevalence: How often does the yes condition actually occur in our sample?
actual yes/total = 105/165 = 0.64

Source Code:

from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_split
import pandas as pd

dataset=pd.read_csv("iris.csv")

X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=0,test_size=0.25)

classifier=KNeighborsClassifier(n_neighbors=8,p=3,metric='euclidean')

ML Lab ML

Dept. of CSE Page

classifier.fit(X_train,y_train)

#predict the test resuts
y_pred=classifier.predict(X_test)

cm=confusion_matrix(y_test,y_pred)
print('Confusion matrix is as follows\n',cm)
print('Accuracy Metrics')
print(classification_report(y_test,y_pred))
print(" correct predicition",accuracy_score(y_test,y_pred))
print(" worng predicition",(1-accuracy_score(y_test,y_pred)))

Output :
Confusion matrix is as follows
[[13 0 0]
[0 15 1]
[0 0 9]]
Accuracy Metrics

precision recall f1-score support

Iris-setosa 1.00 1.00 1.00 13
Iris-versicolor 1.00 0.94 0.97 16
Iris-virginica 0.90 1.00 0.95 9

avg / total 0.98 0.97 0.97 38

correct predicition 0.9736842105263158
worng predicition 0.02631578947368418

ML Lab ML

Dept. of CSE Page

10. Implement the non-parametric Locally Weighted Regression algorithm in order to fit
data points. Select appropriate data set for your experiment and draw graphs.

• Regression is a technique from statistics that is used to predict values of a desired target
quantity when the target quantity is continuous.
• In regression, we seek to identify (or estimate) a continuous variable y associated with a given
input vector x.
• y is called the dependent variable.
• x is called the independent variable.

Loess/Lowess Regression: Loess regression is a nonparametric technique that uses local
weighted regression to fit a smooth curve through points in a scatter plot.

Lowess Algorithm: Locally weighted regression is a very powerful non-parametric model used
in statistical learning .Given a dataset X, y, we attempt to find a model parameter β(x) that
minimizes residual sum of weighted squared errors. The weights are given by a kernel
function(k or w) which can be chosen arbitrarily .

ML Lab ML

Dept. of CSE Page

Locally Weighted Regression Algorithm:

1. Read the Given data Sample to X and the curve (linear or non linear) to Y
2. Set the value for Smoothening parameter or free parameter say τ
3. Set the bias /Point of interest set X0 which is a subset of X
4. Determine the weight matrix using:

5. Determine the value of model term parameter β using :

6. Prediction = x0*β

Source Code:

import numpy as np
from bokeh.plotting import figure, show, output_notebook
from bokeh.layouts import gridplot
from bokeh.io import push_notebook

def local_regression(x0, X, Y, tau):
add bias term
x0 = np.r_[1, x0] # Add one to avoid the loss in information
X = np.c_[np.ones(len(X)), X]

fit model: normal equations with kernel
xw = X.T * radial_kernel(x0, X, tau) # XTranspose * W

beta = np.linalg.pinv(xw @ X) @ xw @ Y # @ Matrix Multiplication or Dot Product

predict value
return x0 @ beta # @ Matrix Multiplication or Dot Product for prediction

def radial_kernel(x0, X, tau):
return np.exp(np.sum((X - x0) ** 2, axis=1) / (-2 * tau * tau))
Weight or Radial Kernal Bias Function

n = 1000
generate dataset
X = np.linspace(-3, 3, num=n)
print("The Data Set (10 Samples) X :\n",X[1:10])
Y = np.log(np.abs(X ** 2 - 1) + .5)
print("The Fitting Curve Data Set (10 Samples) Y :\n",Y[1:10])
jitter X

ML Lab ML

Dept. of CSE Page

X += np.random.normal(scale=.1, size=n)
print("Normalised (10 Samples) X :\n",X[1:10])

domain = np.linspace(-3, 3, num=300)
print(" Xo Domain Space(10 Samples) :\n",domain[1:10])

def plot_lwr(tau):
prediction through regression

prediction = [local_regression(x0, X, Y, tau) for x0 in domain]
plot = figure(plot_width=400, plot_height=400)
plot.title.text='tau=%g' % tau
plot.scatter(X, Y, alpha=.3)
plot.line(domain, prediction, line_width=2, color='red')

return plot

Plotting the curves with different tau
show(gridplot([
[plot_lwr(10.), plot_lwr(1.)],
[plot_lwr(0.1), plot_lwr(0.01)]
]))

Output:
The Data Set (10 Samples) X :
[-2.99399399 -2.98798799 -2.98198198 -2.97597598 -2.96996997 -2.96396396
-2.95795796 -2.95195195 -2.94594595]
The Fitting Curve Data Set (10 Samples) Y :
[2.13582188 2.13156806 2.12730467 2.12303166 2.11874898 2.11445659
2.11015444 2.10584249 2.10152068]
Normalised (10 Samples) X :
[-3.10518137 -3.00247603 -2.9388515 -2.79373602 -2.84946247 -2.85313888
-2.9622708 -3.09679502 -2.69778859]
Xo Domain Space(10 Samples) :
[-2.97993311 -2.95986622 -2.93979933 -2.91973244 -2.89966555 -2.87959866
-2.85953177 -2.83946488 -2.81939799]

ML Lab ML

Dept. of CSE Page

OR
from numpy import *
import operator
from os import listdir
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
import numpy.linalg
from scipy.stats.stats import pearsonr

def kernel(point,xmat, k):
m,n = shape(xmat)
weights = mat(eye((m)))
for j in range(m):
diff = point - X[j]
weights[j,j] = exp(diff*diff.T/(-2.0*k**2))

return weights

def localWeight(point,xmat,ymat,k):
wei = kernel(point,xmat,k)
W = (X.T*(wei*X)).I*(X.T*(wei*ymat.T))
return W

def localWeightRegression(xmat,ymat,k):
m,n = shape(xmat)
ypred = zeros(m)
for i in range(m):
ypred[i] = xmat[i]*localWeight(xmat[i],xmat,ymat,k)

return ypred

load data points
data = pd.read_csv('tips.csv')
bill = array(data.total_bill)
tip = array(data.tip)

ML Lab ML

Dept. of CSE Page

#preparing and add 1 in bill
mbill = mat(bill)
mtip = mat(tip)
m= shape(mbill)[1]
one = mat(ones(m))
X= hstack((one.T,mbill.T))

#set k here
ypred = localWeightRegression(X,mtip,0.2)
SortIndex = X[:,1].argsort(0)
xsort = X[SortIndex][:,0]

fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(bill,tip, color='green')
ax.plot(xsort[:,1],ypred[SortIndex], color = 'red', linewidth=5)
plt.xlabel('Total bill')
plt.ylabel('Tip')
plt.show();

Output:
Dataset
Add Tips.csv (256 rows)

ML Lab ML

Dept. of CSE Page

VIVA Questions

1. What is machine learning?
2. Define supervised learning
3. Define unsupervised learning
4. Define semi supervised learning
5. Define reinforcement learning
6. What do you mean by hypotheses?
7. What is classification?
8. What is clustering?
9. Define precision, accuracy and recall
10. Define entropy
11. Define regression
12. How Knn is different from k-means clustering
13. What is concept learning?
14. Define specific boundary and general boundary
15. Define target function
16. Define decision tree
17. What is ANN
18. Explain gradient descent approximation
19. State Bayes theorem
20. Define Bayesian belief networks
21. Differentiate hard and soft clustering
22. Define variance
23. What is inductive machine learning?
24. Why K nearest neighbor algorithm is lazy learning algorithm
25. Why naïve Bayes is naïve
26. Mention classification algorithms
27. Define pruning
28. Differentiate Clustering and classification
29. Mention clustering algorithms
30. Define Bias
31. What is learning rate? Why it is need.

	Machine learning
	Machine learning tasks
	Machine Learning Applications
	Machine learning Approaches
	2.Association rule learning
	3.Artificial neural networks
	4.Deep learning
	5.Inductive logic programming
	6.Support vector machines
	7.Clustering
	8.Bayesian networks
	9.Reinforcement learning
	10.Similarity and metric learning
	11.Genetic algorithms
	12.Rule-based machine learning
	13.Feature selection approach
	1. Implement and demonstrate the FIND-S algorithm
	Source Code:
	OR
	Output:
	2. For a given set of training data examples store
	OUTPUT
	3.Write a program to demonstrate the working of the
	Source Code:
	OUTPUT:

	OR
	OUTPUT:
	4.Build an Artificial Neural Network by implementing
	#Backpropagation
	Output:
	5.Write a program to implement the naïve Bayesian cl
	•X ,…,X {0,1} (Black vs. White pixels)
	•Y {5,6} (predict whether a digit is a 5 or a 6
	Naïve Bayesian classifier Algorthim:

)2
	 2.35
	Source Code:
	6.Assuming a set of documents that need to be classi
	Gaussian Naive Bayes
	MultiNomial Naive Bayes
	Bernoulli Naive Bayes

	Source Code:
	7.Write a program to construct a Bayesian network co

	Source Code:
	8.Apply EM algorithm to cluster a set of data store
	EM algorithm
	Estimation step:
	Maximization Step:

	Source Code:
	9.Write a program to implement k-Nearest Neighbour a
	K-Nearest-Neighbour Algorithm:
	Confusion matrix:

	Source Code:
	10. Implement the non-parametric Locally Weighted
	Locally Weighted Regression Algorithm:

	Source Code:

	OR
	VIVA Questions

